Texture Classification using Curvelet Transform
نویسندگان
چکیده
Texture classification has played an important role in many real life applications. Now, classification based on wavelet transform is being very popular. Wavelets are very effective in representing objects with isolated point singularities, but failed to represent line singularities. Recently, ridgelet transform which deal effectively with line singularities in 2-D is introduced. But images often contain curves rather than straight lines, so curvelet transform is designed to handle it. It allows representing edges and other singularities along lines in a more efficient way when compared with other transforms. In this paper, the issue of texture classification based on curvelet transform has been analyzed. One group feature vector can be constructed by the mean and variance of the curvelet statistical features, which are derived from the sub-bands of the curvelet decomposition and are used for classification. Experimental results show that this approach allows obtaining high degree of success rate in classification.
منابع مشابه
A Gray Texture Classification Using Wavelet and Curvelet Coefficients
This study presents a framework for gray texture classification based on wavelet and curvelet features. The two main frequency domain transformations Discrete Wavelet Transform (DWT) and Discrete Curvelet Transform (DCT) are analyzed. The features are extracted from the DWT and DCT decomposed image separately and their performances are evaluated independently. The performance metric used to ana...
متن کاملPerformance Analysis of Texture Image Retrieval for Curvelet, Contourlet Transform and Local Ternary Pattern Using Mri Brain Tumor Image
Texture represents spatial or statistical repetition in pixel intensity and orientation. Brain tumor is an abnormal cell or tissue forms within a brain. In this paper, a model based on texture feature is useful to detect the MRI brain tumor images. There are two parts, namely; feature extraction process and classification. First, the texture features are extracted using techniques like Curvelet...
متن کاملA New Curvelet-Based Texture Classification Approach for Land Cover Recognition of SAR Satellite
Texture recognition of synthetic aperture radar (SAR) images, an important technique in the remote sensing area, has been deeply interested in the past decade. It is a key method to analyze this special case of images in practical applications. Watershed transform seems to be a proper method utilized to segment images. However, speckle noise in SAR images and the low resolution of edges make th...
متن کاملTexture Classification Using Curvelet Transform
Abstrat-Brain tumors are due to abnormal growths of tissue in the brain. The most common group is gliomas, followed by meningiomas. Magnetic resonance imaging (MRI) is currently an indispensable diagnostic imaging technique for the early detection of any abnormal changes in tissues and organs. It possesses fairly good contrast resolution for different tissues. It is therefore widely used to pro...
متن کاملAutomated Skin Defect Identification System for Fruit Grading Based on Discrete Curvelet Transform
The purpose of this study was to develop a methodology for assessing fruit quality objectively using texture analysis based on Curvelet Transform. Being a multiresolution approach, curvelets have the capability to examine fruit surface at low and high resolution to extract both global and local details about fruit surface. The fruit images were acquired using a CCD color camera and guava and le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009